In analytical chemistry, linear sweep voltammetry is a method of voltammetry where the current at a working electrode is measured while the potential between the working electrode and a reference electrode is swept linearly in time. Oxidation or reduction of species is registered as a peak or trough in the current signal at the potential at which the species begins to be oxidized or reduced.
The experimental setup for linear sweep voltammetry utilizes a potentiostat and a three-electrode setup to deliver a potential to a solution and monitor its change in current. The three-electrode setup consists of a working electrode, an auxiliary electrode, and a reference electrode. The potentiostat delivers the potentials through the three-electrode setup. A potential, E, is delivered through the working electrode. The slope of the potential vs. time graph is called the scan rate and can range from mV/s to 1,000,000 V/s.
The working electrode is one of the electrodes at which the oxidation/reduction reactions occur—the processes that occur at this electrode are the ones being monitored. The auxiliary electrode (or counter electrode) is the one at which a process opposite from the one taking place at the working electrode occurs. The processes at this electrode are not monitored. The equation below gives an example of a reduction occurring at the surface of the working electrode. Es is the reduction potential of A (if the electrolyte and the electrode are in their standard conditions, then this potential is a standard reduction potential). As E approaches Es, the current on the surface increases, and when E = Es, the concentration of A equals that of the oxidized/reduced A at the surface ([A] = [A−]). As the molecules on the surface of the working electrode are oxidized/reduced, they move away from the surface and new molecules come into contact with the surface of the working electrode. The flow of electrons into or out of the electrode causes the current. The current is a direct measure of the rate at which electrons are being exchanged through the electrode-electrolyte interface.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the basic principles of electrochemistry, focusing on corrosion research. It covers the basics of corrosion testing and monitoring techniques, such as linear polarization, cycli
Introduction to heterogeneous integration for Nano-Bio-CMOS sensors on Chip.
Understanding and designing of active Bio/CMOS interfaces powered by nanostructures.
L'électrode à disque tournant ou EDT (Rotating Disk Electrode ou RDE en anglais) est une électrode de travail hydrodynamique utilisée dans une cellule à trois électrodes. Elles sont couramment utilisées pour des études de cinétique électrochimique en régime stationnaire. Cela vient du fait qu'il est possible, sous certaines hypothèses, de résoudre les équations de Navier-Stokes dans le cas d'une EDT, c’est-à-dire de connaître la vitesse et la direction du flux d'électrolyte au voisinage de l'EDT.
In analytical chemistry, a rotating ring-disk electrode (RRDE) is a double working electrode used in hydrodynamic voltammetry, very similar to a rotating disk electrode (RDE). The electrode rotates during experiments inducing a flux of analyte to the electrode. This system used in electrochemical studies when investigating reaction mechanisms related to redox chemistry and other chemical phenomena. The difference between a rotating ring-disk electrode and a rotating disk electrode is the addition of a second working electrode in the form of a ring around the central disk of the first working electrode.
La voltampérométrie (ou voltammétrie) est une méthode d’électroanalyse basée sur la mesure du flux de courant résultant de la réduction ou de l’oxydation des composés tests présents en solution sous l’effet d’une variation contrôlée de la différence de potentiel entre deux électrodes spécifiques. Elle permet d’identifier et de mesurer quantitativement un grand nombre de composés (cations, certains anions, composés organiques), dont certains simultanément, et également d’étudier les réactions chimiques incluant ces composés.
Explore les processus électrochimiques, y compris les travaux de courant de sédimentation et de tension de surface, en mettant l'accent sur la théorie et les applications.
Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surfac ...
2024
, , ,
Anion exchange membrane water electrolysis (AEMWE) offers a green hydrogen production method that eliminates the need for platinum group metals (PGM) as electrocatalysts. This study employs a COMSOL (R) 6.0 model to simulate a 1x1 cm(2) Ni fibre - Raney (R ...
Amsterdam2024
, , ,
Thesynthesis of molecular uranium complexes in oxidation stateslower than +3 remains a challenge despite the interest for their multielectrontransfer reactivity and electronic structures. Herein, we report theone- and two-electron reduction of a U(III) com ...