MATH-405: Harmonic analysisAn introduction to methods of harmonic analysis.
Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
MICRO-310(b): Signals and systems I (for SV)Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
MICRO-310(a): Signals and systems I (for MT)Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
PHYS-432: Quantum field theory IIThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
MATH-511: Number theory II.a - Modular formsIn this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
MATH-203(b): Analysis IIILe cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.