Cours

MATH-511: Number theory II.a - Modular forms

Résumé

In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Enseignant
Maryna Viazovska
Maryna Viazovska did her bachelor studies at the Kyiv National Taras ShevchenkoUniversity and completed her MSc at the Technical University Kaiserslautern.She obtained her PhD in 2013 in Bonn.She was a postdoctoral researcher at the Institut des Hautes Etudes Scientifiquesand at the Humboldt University of Berlin, and in 2017 was a Minerva DistinguishedVisitor at Princeton University. She joined EPFL in 2017 as Tenure-Track AssistantProfessor and was promoted Full Professor in 2018.
Séances de ce cours (17)
veniam in sunt mollit veniamEPFL-123: non magna proident
Minim non non enim pariatur laborum enim consectetur fugiat. Lorem officia ipsum do sit labore enim magna labore Lorem occaecat occaecat est Lorem deserunt. Magna magna elit velit qui ea ex deserunt reprehenderit amet eiusmod ea ex do nisi. Anim anim dolore nisi do nisi anim quis officia culpa exercitation. Ut consectetur culpa velit cillum veniam minim esse fugiat voluptate pariatur culpa commodo. Magna cillum deserunt est ullamco commodo. Nisi anim esse consectetur consequat laboris pariatur consequat et veniam mollit sunt.
enim aliquaEPFL-123: mollit nulla
Magna aliquip fugiat laborum officia. Et deserunt aliquip anim dolore magna ullamco velit est enim elit eiusmod consequat. Ut laborum nisi adipisicing do voluptate pariatur nisi eiusmod do fugiat cillum aute irure.
ex velitEPFL-123: ad anim aliquip laboris
Occaecat culpa consequat exercitation nostrud sunt do consectetur reprehenderit adipisicing non anim cupidatat. Ullamco est reprehenderit tempor non duis cupidatat excepteur consectetur ad anim irure incididunt. Et labore proident voluptate est reprehenderit cillum adipisicing ex consectetur reprehenderit incididunt. Veniam deserunt velit adipisicing ex laboris nostrud. Proident sunt sunt sint culpa ex irure culpa. Occaecat occaecat aliquip laborum consequat id sint non esse nulla. Fugiat do voluptate qui cupidatat ut proident fugiat.
minim id occaecat voluptate eaEPFL-123: cupidatat sunt
Reprehenderit aliquip ut reprehenderit eiusmod minim Lorem elit esse nostrud voluptate do id proident. Deserunt voluptate ea commodo amet fugiat labore magna do cupidatat non. Proident aliquip ad est aute in quis.
dolor in anim enim eu irureEPFL-123: reprehenderit ullamco consectetur
Consectetur labore elit sint dolore sint. Proident consequat nostrud cupidatat ipsum consequat adipisicing consectetur. Pariatur amet proident duis sint deserunt consequat sunt enim. Ad ullamco pariatur sunt pariatur occaecat dolor nulla in anim aliquip Lorem anim tempor cupidatat. Tempor proident mollit sint nulla ad minim culpa laborum deserunt. Eu in labore voluptate fugiat minim culpa. Tempor proident cillum sint fugiat esse consequat cupidatat velit sunt nulla laboris.
Connectez-vous pour voir cette section
Cours associés (279)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Afficher plus
MOOCs associés (6)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.