Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Trou de vervignette|Exemple de trou de ver dans une métrique de Schwarzschild, tel qu'il serait vu par un observateur ayant franchi l'horizon du trou noir. La région d'où vient l'observateur est située à droite de l'image. Mise à part la région située près de l'ombre du trou noir, les effets de décalage vers le rouge gravitationnel rendent le fond du ciel très sombre. Celui-ci est en revanche très lumineux dans la seconde région, visible une fois l'horizon passé.
Courbe fermée de type tempsDans une variété lorentzienne de la géométrie différentielle, on appelle , courbe de genre temps fermée ou courbe temporelle fermée (closed timelike curve, ou en abrégé CTC, en anglais) la ligne d'univers d'une particule matérielle fermée dans l'espace-temps, c'est-à-dire capable de retourner au même point et à son instant de départ. a évoqué cette possibilité en 1937 et Kurt Gödel en 1949. Si l’existence des CTC était prouvée, cela pourrait au moins impliquer la possibilité théorique de construire une machine à voyager dans le temps, ainsi qu’une reformulation du paradoxe du grand-père.
Kerr metricThe Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.
Forme de l'Universthumb|Les trois formes possibles de l'Univers (voir l'article courbure spatiale). Le modèle le plus probable en 2016 est celui de l'Univers plat. Le terme "forme de l'Univers", en cosmologie, désigne généralement soit la forme (la courbure et la topologie) d'une section spatiale de l'Univers (« forme de l'espace-temps »), soit, de façon plus générale, la forme de l'espace-temps tout entier. Selon les observations astronomiques, l'Univers apparaît plat, avec toutefois une marge d'erreur de 0,4 %.
Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
GravitationLa gravitation, l'une des quatre interactions fondamentales qui régissent l'Univers, est l' physique responsable de l'attraction des corps massifs. Elle se manifeste notamment par l'attraction terrestre qui nous retient au sol, la gravité, qui est responsable de plusieurs manifestations naturelles; les marées, l'orbite des planètes autour du Soleil, la sphéricité de la plupart des corps célestes en sont quelques exemples. D'une manière plus générale, la structure à grande échelle de l'Univers est déterminée par la gravitation.