In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.
In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events.
The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature. Discussions of the causal structure for such manifolds must be phrased in terms of smooth curves joining pairs of points. Conditions on the tangent vectors of the curves then define the causal relationships.
If is a Lorentzian manifold (for metric on manifold ) then the nonzero tangent vectors at each point in the manifold can be classified into three disjoint types.
A tangent vector is:
timelike if
null or lightlike if
spacelike if
Here we use the metric signature. We say that a tangent vector is non-spacelike if it is null or timelike.
The canonical Lorentzian manifold is Minkowski spacetime, where and is the flat Minkowski metric. The names for the tangent vectors come from the physics of this model. The causal relationships between points in Minkowski spacetime take a particularly simple form because the tangent space is also and hence the tangent vectors may be identified with points in the space. The four-dimensional vector is classified according to the sign of , where is a Cartesian coordinate in 3-dimensional space, is the constant representing the universal speed limit, and is time. The classification of any vector in the space will be the same in all frames of reference that are related by a Lorentz transformation (but not by a general Poincaré transformation because the origin may then be displaced) because of the invariance of the metric.
At each point in the timelike tangent vectors in the point's tangent space can be divided into two classes. To do this we first define an equivalence relation on pairs of timelike tangent vectors.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
This course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s. The weaker the causality condition on a spacetime, the more unphysical the spacetime is. Spacetimes with closed timelike curves, for example, present severe interpretational difficulties. See the grandfather paradox.
L'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
vignette|droite|250px|Diagramme de Penrose d'un espace de Minkowski infini. Deux dimensions d'espace ont été éliminées et la dimension (spatiale) infinie est représentée sur un segment (fini) horizontal. L'axe temporel est vertical. Un diagramme de Penrose-Carter est un diagramme bidimensionnel utilisé, en relativité générale, pour faciliter l'étude des propriétés causales d'un espace-temps.
Hawking's black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclass ...
This paper investigates causal influences between agents linked by a social graph and interacting over time. In particular, the work examines the dynamics of social learning models and distributed decision-making protocols, and derives expressions that rev ...
We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole-Hopf solution of the KPZ equati ...