In solid-state physics, a metal–semiconductor (M–S) junction is a type of electrical junction in which a metal comes in close contact with a semiconductor material. It is the oldest practical semiconductor device. M–S junctions can either be rectifying or non-rectifying. The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact. (In contrast, a rectifying semiconductor–semiconductor junction, the most common semiconductor device today, is known as a p–n junction.)
Metal–semiconductor junctions are crucial to the operation of all semiconductor devices. Usually an ohmic contact is desired, so that electrical charge can be conducted easily between the active region of a transistor and the external circuitry.
Occasionally however a Schottky barrier is useful, as in Schottky diodes, Schottky transistors, and metal–semiconductor field effect transistors.
Whether a given metal-semiconductor junction is an ohmic contact or a Schottky barrier depends on the Schottky barrier height, ΦB, of the junction.
For a sufficiently large Schottky barrier height, that is, ΦB is significantly higher than the thermal energy kT, the semiconductor is depleted near the metal and behaves as a Schottky barrier. For lower Schottky barrier heights, the semiconductor is not depleted and instead forms an ohmic contact to the metal.
The Schottky barrier height is defined differently for n-type and p-type semiconductors (being measured from the conduction band edge and valence band edge, respectively). The alignment of the semiconductor's bands near the junction is typically independent of the semiconductor's doping level, so the n-type and p-type Schottky barrier heights are ideally related to each other by:
where Eg is the semiconductor's band gap.
In practice, the Schottky barrier height is not precisely constant across the interface, and varies over the interfacial surface.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The work underscores the feasibility of highly efficient silicon solar cell structures manufactured with high throughput machines. The main challenge consists in the implementation of more performant
We present a theoretical study of the physical characteristics of metal/semiconductor junctions. Using first principle pseudopotential calculations, we have investigated the nature of electronic state
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
This course aims to give a solid introduction to semiconductors, from Silicon to compound semiconductors, making the connection between the physics and their application in real life. We will explore
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
En physique, en mécanique quantique, le travail de sortie ou travail d'extraction est l'énergie minimum, mesurée en électron-volts, nécessaire pour arracher un électron depuis le niveau de Fermi d'un métal jusqu'à un point situé à l'infini en dehors du métal (niveau du vide). Le travail de sortie est approximativement la moitié de l'énergie d'ionisation d'un atome libre du même métal. L'effet photoélectrique consiste en une libération d'un électron lorsqu'un photon doté d'une énergie supérieure au travail de sortie arrive sur le métal.
In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. These diagrams help to explain the operation of many kinds of semiconductor devices and to visualize how bands change with position (band bending). The bands may be coloured to distinguish level filling. A band diagram should not be confused with a band structure plot.
In solid-state physics, a metal–semiconductor (M–S) junction is a type of electrical junction in which a metal comes in close contact with a semiconductor material. It is the oldest practical semiconductor device. M–S junctions can either be rectifying or non-rectifying. The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact.
Fournit une vue d'ensemble de la physique des jonctions métal-semiconducteur, y compris la fonction de travail, la barrière Schottky, les contacts Ohmic et les hétérojonctions.