La pondération inverse à la distance ou PID (en anglais, inverse distance weighting ou IDW) est une méthode d'interpolation spatiale, un processus permettant d'assigner une valeur à tout point d'un espace à partir d'un semis de points connus. Une forme courante pour trouver une valeur interpolée u à partir d'un point donné x en utilisant la PID comme fonction d'interpolation : où : est une fonction simple de pondération, comme définie par Shepard, x étant le point à interpoler, xk est un point d'interpolation (connu), uk la valeur de la fonction u au point xk, d est une distance donnée (opérateur de mesure) du point d'interpolation xk au point à interpoler x, N est le nombre total de points connus utilisés dans l'interpolation et p est un nombre positif réel, appelé le paramètre de puissance. Ici, le poids des points voisins diminue lorsque la distance augmente. Les plus grandes valeurs de p donnent une influence plus grande aux valeurs les plus proches du point interpolé. Pour 0 < p < 1, en u(x), on observe des sommets lissés autour du point d'interpolation xk, alors que pour p > 1, le pic devient plus pointu. Le choix de p est donc une fonction du degré de lissage désiré pour l'interpolation, de la densité et la distribution des échantillons interpolés, et de la distance maximum au-delà de laquelle un échantillon individuel peut influencer les points environnants. Telle que décrite, la fonction d'interpolation est indéterminée aux points d'interpolation (division 0/0). Dans ce cas, la pondération sera prise égale à 1 pour le point à distance 0 de x, et 0 pour tous les autres points. La méthode de Shepard est une conséquence de la minimisation d'une fonction liée à la mesure des déviations entre les tuples de points interpolés {x, u(x)} et k tuples de points d'interpolation {xk, uk}, définis comme : dérivé de la condition de minimisation : La méthode peut être aisément étendue à des dimensions supérieures de l'espace et est en fait une généralisation de l'approximation de Lagrange aux espaces multidimensionnels.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (32)
Concepts associés (5)
Tobler's first law of geography
The First Law of Geography, according to Waldo Tobler, is "everything is related to everything else, but near things are more related than distant things." This first law is the foundation of the fundamental concepts of spatial dependence and spatial autocorrelation and is utilized specifically for the inverse distance weighting method for spatial interpolation and to support the regionalized variable theory for kriging. The first law of geography is the fundamental assumption used in all spatial analysis.
Analyse spatiale
vignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Tobler's second law of geography
The second law of geography, according to Waldo Tobler, is "the phenomenon external to a geographic area of interest affects what goes on inside." This is an extension of his first. He first published it in 1999 in reply to a paper titled "Linear pycnophylactic reallocation comment on a paper by D. Martin" and then again in response to criticism of his first law of geography titled "On the First Law of Geography: A Reply." Much of this criticism was centered on the question of if laws were meaningful in geography or any of the social sciences.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.