Pierre VandergheynstPierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007), where he is now a Full Professor of Electrical Engineering and, by courtesy, of Computer and Communication Sciences. As of 2015, Prof. Vandergheynst serves as EPFL’s Vice-Provost for Education. His research focuses on harmonic analysis, sparse approximations and mathematical data processing in general with applications covering signal, image and high dimensional data processing, computer vision, machine learning, data science and graph-based data processing. He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate Editor of the IEEE Transactions on Signal Processing (2007-2011), the flagship journal of the signal processing community and currently serves as Associate Editor of Computer Vision and Image Understanding and SIAM Imaging Sciences. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop and was co-General Chairman of the EUSIPCO 2008 conference. Pierre Vandergheynst is the author or co-author of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards. Professor Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium.
Martin HaslerAfter a PhD and a postdoc in theoretical physics, Martin Hasler has pursued reasearch in electrical circuit and filter theory. His current interests are the applications of nonlinear dynamics in engineering and biology. In particular, he is interested in information processing in biological and technological networks. He is most well-known for his work in communications using chaos and in synchronization of networks of dynamical systems.
He joined EPFL in 1974, became a titular professor in 1984 and a full professor in 1998. In 2002, he was acting Dean of the School of Computer and Communication Sciences. He was elected Fellow of the IEEE in 1993. He was the general chair of ISCAS 2000 in Geneva. He was Associate Editor of the IEEE Transactions in Circuits and Systems from 1991 to 1993 and Editor-in-Chief from 1993 to 1995. He was elected vice-president for Technical Activities of the IEEE Circuits and Systems Society from 2002 to 2005. He is a member of the Research Council of the Swiss National Science Foundation.
Ali H. SayedAli H. Sayed est doyen de la Faculté des sciences et techniques de l’ingénieur (STI) de l'EPFL, en Suisse, où il dirige également le laboratoire de systèmes adaptatifs. Il a également été professeur émérite et président du département d'ingénierie électrique de l'UCLA. Il est reconnu comme un chercheur hautement cité et est membre de la US National Academy of Engineering. Il est également membre de l'Académie mondiale des sciences et a été président de l'IEEE Signal Processing Society en 2018 et 2019.
Le professeur Sayed est auteur et co-auteur de plus de 570 publications et de six monographies. Ses recherches portent sur plusieurs domaines, dont les théories d'adaptation et d'apprentissage, les sciences des données et des réseaux, l'inférence statistique et les systèmes multi-agents, entre autres.
Ses travaux ont été récompensés par plusieurs prix importants, notamment le prix Fourier de l'IEEE (2022), le prix de la société Norbert Wiener (2020) et le prix de l'éducation (2015) de la société de traitement des signaux de l'IEEE, le prix Papoulis (2014) de l'Association européenne de traitement des signaux, le Meritorious Service Award (2013) et le prix de la réalisation technique (2012) de la société de traitement des signaux de l'IEEE, le prix Terman (2005) de la société américaine de formation des ingénieurs, le prix de conférencier émérite (2005) de la société de traitement des signaux de l'IEEE, le prix Koweït (2003) et le prix Donald G. Fink (1996) de l'IEEE. Ses publications ont été récompensées par plusieurs prix du meilleur article de l'IEEE (2002, 2005, 2012, 2014) et de l'EURASIP (2015). Pour finir, Ali H. Sayed est aussi membre de l'IEEE, d'EURASIP et de l'American Association for the Advancement of Science (AAAS), l'éditeur de la revue Science.
Wulfram GerstnerWulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL. After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems',
Journal of Computational Neuroscience', and `Science'.
Volkan CevherVolkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory, optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.