En mathématiques, et en particulier en théorie des graphes, la matrice des degrés d'un graphe est la matrice diagonale, qui contient sur sa diagonale, le degré de chaque sommet. Si on lui soustrait la matrice d'adjacence, on obtient la matrice laplacienne d'un graphe. Étant donné un graphe contenant sommets, la matrice des degrés de est la matrice carrée définie par : Le degré du sommet est le nombre de liens (arêtes ou arcs) aboutissant à ce sommet. Ainsi, pour un graphe non orienté, chaque boucle compte pour 2 : en effet, chaque lien a deux extrémités et chacune de ces deux extrémités augmente le degré. De la même façon, les sommets isolés ont un degré égal à 0. Dans le cas d'un graphe orienté, le degré d'un sommet est la somme de son degré entrant et de son degré sortant. Le degré du sommet 1 vaut 4 : en effet, le sommet 1 est connecté aux sommets 2 et 5, et il y a aussi la boucle. Ainsi, le sommet 1 est de degré 2+2 = 4. Le degré du sommet 2 vaut 3 : en effet, le sommet numéro 2 est connecté aux sommet 1, 3 et 5, d'où un degré de 3. vignette|Graphe de Petersen : graphe régulier où les sommets de degré 3. La matrice des degrés d'un graphe régulier de degré a une diagonale dont les coefficients valent tous .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.