Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente les bases de l'analyse de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de techniques de prétraitement et de modèles d'apprentissage automatique.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Plongez dans le traitement de grandes collections de textes numériques, en explorant les régularités cachées, la réutilisation du texte et l'analyse TF-IDF.
Explore la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets dans l'analyse de texte à l'aide de modèles d'apprentissage supervisé et de sacs de mots.
Explore le traitement des données texte, en dérivant des ensembles de données propres à partir de textes non structurés, et diverses techniques d'analyse de texte.
Explore le traitement de grands textes numériques, révélant des modèles et des structures cachés, et la convergence des sciences humaines et de la linguistique computationnelle.