Résumé
thumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires. La fonction d'onde est un des concepts fondamentaux de la mécanique quantique. Elle correspond à la représentation de l'état quantique d'un système dans une base de dimension infinie, en général celle des positions . Dans ce dernier cas, elle est notée , qui, par définition, correspond à , si l'état quantique est normé. La fonction d'onde correspond à une amplitude de probabilité, en général à valeurs complexes. La probabilité de trouver une particule au voisinage de la position à l'instant t est alors proportionnelle au carré du module de la fonction d'onde , densité de probabilité (volumique) de présence, et à la mesure du volume du voisinage considéré de . Cette interprétation probabiliste de la notion de fonction d'onde a été développée dans les années 1925-1927 par Max Born, Werner Heisenberg et d'autres, et constitue l'interprétation de Copenhague de la mécanique quantique, laquelle interprète ce caractère probabiliste dans l'interaction entre le système de mesure (macroscopique, donc classique) et le système quantique, conduisant à la réduction du paquet d'onde. Si elle est la plus couramment admise en pratique, cette interprétation soulève divers problèmes épistémologiques (cf. Problème de la mesure quantique). Si le système est dans un état stationnaire, cette densité de probabilité ne dépend pas du temps et il est possible d'utiliser la fonction d'onde stationnaire , qui dans ce cas ne diffère de que par un facteur de phase, nombre complexe de module 1 sans intérêt physique particulier. La fonction d'onde est calculée à l'aide de l'équation de Schrödinger.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.