Cours associés (10)
COM-512: Networks out of control
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
EE-619: Advanced topics in network neuroscience
The main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and
ME-467: Turbulence
This course provides an introduction to the physical phenomenon of turbulence, its probabilistic description and modeling approaches including RANS and LES. Students are equipped with the basic knowle
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
PHYS-435: Statistical physics III
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
NX-450: Computational neurosciences: biophysics
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
MATH-106(f): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.