Topologie étaleUne topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale.
Cohomologie motiviqueUne cohomologie motivique est une théorie cohomologique en mathématiques dont l'existence a été conjecturée pour la première fois par Alexandre Grothendieck dans les années 1960. À l'époque, on la concevait comme construite sur les bases des sur les cycles algébriques, en géométrie algébrique. Elle puise ses fondements en théorie des catégories, ce qui permet de déduire des conséquences à partir de ces conjectures. Grothendieck et Bombieri ont démontré la profondeur de cette approche en dérivant une des conjectures de Weil de cette façon.
Motif (géométrie algébrique)La théorie des motifs est un domaine de recherche mathématique qui tente d'unifier les aspects combinatoires, topologiques et arithmétiques de la géométrie algébrique. Introduite au début des années 1960 et de manière conjecturale par Alexander Grothendieck afin de mettre au jour des propriétés supposées communes à différentes théories cohomologiques, elle se trouve au cœur de nombreux problèmes ouverts en mathématiques pures. En particulier, plusieurs propriétés des courbes elliptiques semblent motiviques par nature, comme la conjecture de Birch et Swinnerton-Dyer.