Résumé
Air showers are extensive cascades of subatomic particles and ionized nuclei, produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle of the cosmic radiation, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, interacts with the nucleus of a molecule in the atmosphere, it produces a vast number of secondary particles, which make up the shower. In the first interactions of the cascade especially hadrons (mostly light mesons like pions and kaons) are produced and decay rapidly in the air, producing other particles and electromagnetic radiation, which are part of the shower components. Depending on the energy of the cosmic ray, the detectable size of the shower can reach several kilometers in diameter. The absorbed ionizing radiation from cosmic radiation is largely from muons, neutrons, and electrons, with a dose rate that varies in different parts of the world and is based largely on the geomagnetic field, altitude, and solar cycle. Airline crews are exposed to more radiation from cosmic rays if they routinely work flight routes that take them close to the North or South pole at high altitudes, where the shielding by the geomagnetic field is minimal. The air shower phenomenon was unknowingly discovered by Bruno Rossi in 1933 in a laboratory experiment. In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that cosmic-ray particles are of extremely high energies and interact with nuclei high up in the atmosphere, initiating a cascade of secondary interactions that produce extensive showers of subatomic particles. The most important experiments detecting extensive air showers today are the Telescope Array Project and the Pierre Auger Observatory. The latter is the largest observatory for cosmic rays ever built, operating with 4 fluorescence detector buildings and 1600 surface detector stations spanning an area of 3,000 km2 in the Argentinean desert.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Publications associées (39)
Concepts associés (2)
Particule α
Les particules alpha (ou rayons alpha) sont une forme de rayonnement émis, principalement, par des noyaux instables de grande masse atomique. Elles sont constituées de deux protons et deux neutrons combinés en une particule identique au noyau d' (hélion) ; elles peuvent donc s'écrire 4He2+. La masse d'une particule alpha est de , ce qui équivaut à une énergie de masse de . Radioactivité α Les particules alpha sont émises par des noyaux radioactifs, comme l'uranium ou le radium, par l'intermédiaire du processus de désintégration alpha.
Rayonnement cosmique
Le rayonnement cosmique est le flux de noyaux atomiques et de particules de haute énergie (c'est-à-dire relativistes) qui circulent dans le milieu interstellaire. Le rayonnement cosmique est principalement constitué de particules chargées : protons (88 %), noyaux d'hélium (9 %), antiprotons, électrons, positrons et particules neutres (rayons gamma, neutrinos et neutrons). La source de ce rayonnement se situe selon les cas dans le Soleil, à l'intérieur ou à l'extérieur de notre galaxie.