In statistics and econometrics, the multinomial probit model is a generalization of the probit model used when there are several possible categories that the dependent variable can fall into. As such, it is an alternative to the multinomial logit model as one method of multiclass classification. It is not to be confused with the multivariate probit model, which is used to model correlated binary outcomes for more than one independent variable. It is assumed that we have a series of observations Yi, for i = 1...n, of the outcomes of multi-way choices from a categorical distribution of size m (there are m possible choices). Along with each observation Yi is a set of k observed values x1,i, ..., xk,i of explanatory variables (also known as independent variables, predictor variables, features, etc.). Some examples: The observed outcomes might be "has disease A, has disease B, has disease C, has none of the diseases" for a set of rare diseases with similar symptoms, and the explanatory variables might be characteristics of the patients thought to be pertinent (sex, race, age, blood pressure, body-mass index, presence or absence of various symptoms, etc.). The observed outcomes are the votes of people for a given party or candidate in a multi-way election, and the explanatory variables are the demographic characteristics of each person (e.g. sex, race, age, income, etc.). The multinomial probit model is a statistical model that can be used to predict the likely outcome of an unobserved multi-way trial given the associated explanatory variables. In the process, the model attempts to explain the relative effect of differing explanatory variables on the different outcomes. Formally, the outcomes Yi are described as being categorically-distributed data, where each outcome value h for observation i occurs with an unobserved probability pi,h that is specific to the observation i at hand because it is determined by the values of the explanatory variables associated with that observation. That is: or equivalently for each of m possible values of h.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.