In modal logic, a classical modal logic L is any modal logic containing (as axiom or theorem) the duality of the modal operators that is also closed under the rule Alternatively, one can give a dual definition of L by which L is classical if and only if it contains (as axiom or theorem) and is closed under the rule The weakest classical system is sometimes referred to as E and is non-normal. Both algebraic and neighborhood semantics characterize familiar classical modal systems that are weaker than the weakest normal modal logic K. Every regular modal logic is classical, and every normal modal logic is regular and hence classical.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Logique modale normale
En logique, une logique modale normale est un ensemble L de formules modales tel que L contient: Toutes les tautologies propositionnelles; Toutes les instances du schéma de Kripke: et est limité sous: Règle détachement (Modus Ponens): ; règle de nécessitation: implique . La plus petite logique répondant aux conditions ci-dessus est appelé K. La plupart des logiques modales couramment utilisés de nos jours (en termes de motivations philosophiques), par exemple Le S4 et S5 de C. I. Lewis, sont des extensions de K.
Logique modale
En logique mathématique, une logique modale est un type de logique formelle qui étend la logique propositionnelle, la logique du premier ordre ou la logique d'ordre supérieur avec des modalités. Une modalité spécifie des . Par exemple, une proposition comme « il pleut » peut être précédée d'une modalité : Il est nécessaire qu'''il pleuve ; Demain, il pleut ; Christophe Colomb croit quil pleut ; Il est démontré qu'''il pleut ; Il est obligatoire quil pleuve.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.