En logique, une logique modale normale est un ensemble L de formules modales tel que L contient: Toutes les tautologies propositionnelles; Toutes les instances du schéma de Kripke: et est limité sous: Règle détachement (Modus Ponens): ; règle de nécessitation: implique . La plus petite logique répondant aux conditions ci-dessus est appelé K. La plupart des logiques modales couramment utilisés de nos jours (en termes de motivations philosophiques), par exemple Le S4 et S5 de C. I. Lewis, sont des extensions de K. Cependant, un certain nombre de logique déontique et épistémique, par exemple, sont non-normale, souvent parce qu'elles abandonnent le schéma de Kripke. Le tableau suivant répertorie plusieurs systèmes modaux normaux communs. La notation se réfère à la sémantique de Kripke § schéma d'axiome modale commun. les conditions de cadres pour certains systèmes ont été simplifiées: les logiques sont complètes en ce qui concerne les classes de cadre donnée dans le tableau. Alexander Chagrov et Michael Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, 1997.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Concepts associés (4)
Sémantique de Kripke
En logique mathématique, la sémantique de Kripke est une sémantique formelle utilisée pour les logiques non-classiques comme la logique intuitionniste et certaines logiques modales. Elle a été développée à la fin des années 1950 et début des années 1960 par Saul Kripke et est fondée sur la théorie des mondes possibles. Un cadre de Kripke est un couple (W, R), où W est un ensemble de mondes appelés parfois mondes possibles et où R est une relation binaire sur W. L'ensemble W s'appelle parfois l'univers des mondes possibles.
Classical modal logic
In modal logic, a classical modal logic L is any modal logic containing (as axiom or theorem) the duality of the modal operators that is also closed under the rule Alternatively, one can give a dual definition of L by which L is classical if and only if it contains (as axiom or theorem) and is closed under the rule The weakest classical system is sometimes referred to as E and is non-normal. Both algebraic and neighborhood semantics characterize familiar classical modal systems that are weaker than the weakest normal modal logic K.
Logique épistémique
La logique épistémique est une logique modale qui permet de raisonner à propos de la connaissance d'un ou plusieurs agents. Elle permet aussi de raisonner sur les connaissances des connaissances des autres agents, etc. Son nom est tiré du nom grec epistḗmē qui signifie « connaissance » (du verbe epístamai « savoir »), d'où vient aussi le mot épistémologie. L'application de la logique épistémique à l'économie a été promue par Robert Aumann, Prix Nobel d'économie 2005. Elle a été introduite par et Jaakko Hintikka.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.