In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers.
Special cases are called the real line R1 and the real coordinate plane R2.
With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.
The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension n form a real coordinate space of dimension n.
These one to one correspondences between vectors, points and coordinate vectors explain the names of coordinate space and coordinate vector. It allows using geometric terms and methods for studying real coordinate spaces, and, conversely, to use methods of calculus in geometry. This approach of geometry was introduced by René Descartes in the 17th century. It is widely used, as it allows locating points in Euclidean spaces, and computing with them.
For any natural number n, the set Rn consists of all n-tuples of real numbers (R). It is called the "n-dimensional real space" or the "real n-space".
An element of Rn is thus a n-tuple, and is written
where each xi is a real number. So, in multivariable calculus, the domain of a function of several real variables and the codomain of a real vector valued function are subsets of Rn for some n.
The real n-space has several further properties, notably:
With componentwise addition and scalar multiplication, it is a real vector space. Every n-dimensional real vector space is isomorphic to it.
With the dot product (sum of the term by term product of the components), it is an inner product space. Every n-dimensional real inner product space is isomorphic to it.
As every inner product space, it is a topological space, and a topological vector space.
It is a Euclidean space and a real affine space, and every Euclidean or affine space is isomorphic to it.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
Ce cours ambitionne de présenter les mathématiques de la mécanique quantique, et plus généralement de la physique quantique. Il s'adresse essentiellement aux physiciens, ou a des mathématiciens intére
En topologie, une variété topologique est un espace topologique, éventuellement séparé, assimilable localement à un espace euclidien. Les variétés topologiques constituent une classe importante des espaces topologiques, avec des applications à tous les domaines des mathématiques. Le terme variété peut désigner une variété topologique, ou, le plus souvent, une variété topologique munie d'une autre structure. Par exemple, une variété différentielle est une variété topologique munie d'une structure permettant le calcul différentiel.
En mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Explore la sommation d'Ewald pour l'énergie coulombienne électrostatique dans les systèmes périodiques, en soulignant l'importance des charges de dépistage gaussiennes.
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
Cambridge2023
, ,
Most perovskite oxides belong to the Pbnm space group, composed of an anisotropic unit cell, A-site antipolar displacements, and oxygen octahedral tilts. Mapping the orientation of the orthorhombic unit cell in epitaxial heterostructures that consist of at ...
Melville2024
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...