Concept

Théorème des valeurs intermédiaires

Résumé
vignette|Illustration du théorème des valeurs intermédiaires : si f est une fonction continue sur l'intervalle [a ; b], alors elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois. Ici la valeur s est prise trois fois. En mathématiques, le théorème des valeurs intermédiaires (abrégé en TVI), parfois appelé théorème de Bolzano, est un résultat important en analyse et concerne des fonctions continues sur un intervalle. Il indique que si une fonction continue sur un intervalle prend deux valeurs m et n, alors elle prend toutes les valeurs intermédiaires entre m et n. Ce théorème donne dans certains cas l'existence de solutions d'équations et est à la base de techniques de résolutions approchées comme la méthode de dichotomie. thumb|upright=2|Profil de l'étape Pau-Hautacam du Tour de France 2008. La du Tour de France 2008 était une course cycliste de de long partant de Pau (altitude : ) et arrivant à Hautacam (). Le profil de l'étape est une fonction définie sur l'intervalle [0 ; 156] et à valeurs réelles. À tout nombre x de [0 ; 156], elle associe l'altitude du point situé à x kilomètres du départ. Puisque les altitudes s'échelonnent de 200 à , il paraît évident que les coureurs ayant terminé l'étape ont dû passer au moins une fois par toutes les altitudes intermédiaires, c'est-à-dire les altitudes entre 200 et 1520m. Par exemple, le coureur passera au moins une fois par l'altitude . Cependant, cette constatation s'appuie sur deux hypothèses : le parcours est un intervalle, ce qui suppose que l'espace est un « continuum » – les mathématiciens parlent d'espace connexe – c'est-à-dire qu'il n'y a pas de « trou » entre 0 et 156. la fonction altitude est continue, ce qui signifie qu'une variation infinitésimale du kilométrage entraîne une variation infinitésimale de l'altitude. En d'autres termes, un coureur ne peut pas se téléporter instantanément d'une altitude à une autre.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.