Concept

Bijection réciproque

Résumé
En mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection f est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par f. Elle se note f^{-1}. Exemple On considère l'application f de \mathbb{R} vers \mathbb{R} définie par f\left(x\right)=x^3. Pour chaque réel y, il y a un et un seul réel x tel que y=x^3=f(x), ainsi pour y = 8, le seul x convenable est 2, en revanche, pour y = –27 c'est –3. En termes mathématiques, on dit que x est l'unique antécédent de y et que f est une bijection. On peut alors considérer l'application qui envoie y sur son antécédent, qu'on appelle dans cet exemple la racine cubique de y : c'est elle qu'on nomme la « réciproque » de la bijection f. Si on te
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement