Pyramide pentagonale gyroallongéeIn geometry, the gyroelongated pentagonal pyramid is one of the Johnson solids (J_11). As its name suggests, it is formed by taking a pentagonal pyramid and "gyroelongating" it, which in this case involves joining a pentagonal antiprism to its base. It can also be seen as a diminished icosahedron, an icosahedron with the top (a pentagonal pyramid, J_2) chopped off by a plane. Other Johnson solids can be formed by cutting off multiple pentagonal pyramids from an icosahedron: the pentagonal antiprism and metabidiminished icosahedron (two pyramids removed), and the tridiminished icosahedron (three pyramids removed).
Icosaèdre métabidiminuéL'icosaèdre métabidiminué est un polyèdre faisant partie des solides de Johnson (J62). Comme le nom l'indique, il peut être construit en diminuant doublement un icosaèdre en détachant deux pyramides pentagonales (J2). Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966. MathWorld.wolfram.
Pyramide pentagonaleEn géométrie, la pyramide pentagonale est un des solides de Johnson (J2). Comme toute pyramide, c'est un polyèdre autodual. Il peut être vu comme le "couvercle" d'un icosaèdre; le reste de l'icosaèdre forme la pyramide pentagonale gyroallongée, J11. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966. Plus généralement, une pyramide pentagonale de sommet uniforme d'ordre 2 peut être définie avec une base pentagonale régulière et 5 côtés en forme de triangles isocèles de hauteur quelconque.
Stellation diagramIn geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one. The lines cause 2D space to be divided up into regions. Regions not intersected by any further lines are called elementary regions. Usually unbounded regions are excluded from the diagram, along with any portions of the lines extending to infinity. Each elementary region represents a top face of one cell, and a bottom face of another.
Dodécaèdre adouciLe dodécaèdre adouci ou icosidodécaèdre adouci est un solide d'Archimède. Le dodécaèdre possède 92 faces dont 12 sont des pentagones et les 80 autres sont des triangles équilatéraux. Il possède aussi 150 arêtes et 60 sommets. Il a deux formes distinctes, qui sont les images dans un miroir (ou énantiomorphes) l'une de l'autre. Le dodécaèdre peut être engendré en prenant les douze faces pentagonales du dodécaèdre, en les tirant de telle façon qu'aucune ne se touchent, puis en leur donnant toutes une petite rotation de leurs centres (toutes en sens horaire (Sh) ou toutes en sens anti-horaire (Sah)) jusqu'à ce que l'espace entre elles puisse être rempli par des triangles équilatéraux.
Polyhedral skeletal electron pair theoryIn chemistry the polyhedral skeletal electron pair theory (PSEPT) provides electron counting rules useful for predicting the structures of clusters such as borane and carborane clusters. The electron counting rules were originally formulated by Kenneth Wade, and were further developed by others including Michael Mingos; they are sometimes known as Wade's rules or the Wade–Mingos rules. The rules are based on a molecular orbital treatment of the bonding. These rules have been extended and unified in the form of the Jemmis mno rules.
Icosahedral honeycombIn geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure. The dihedral angle of a regular icosahedron is around 138.2°, so it is impossible to fit three icosahedra around an edge in Euclidean 3-space. However, in hyperbolic space, properly scaled icosahedra can have dihedral angles of exactly 120 degrees, so three of those can fit around an edge.
Tenségrité (architecture)vignette|Needle Tower II (Tour d'aiguilles II) par au musée Kröller-Müller à Otterlo (Pays-Bas). La tenségrité, soit l'intégrité en tension ou la compression flottante, est en architecture, un principe structurel basé sur un système de composants isolés sous compression à l'intérieur d'un réseau en tension continue, et disposés de telle sorte que les éléments comprimés (généralement des barres ou des entretoises) ne se touchent pas tandis que les éléments tendus précontraints (généralement des câbles ou des tendons) délimitent le système dans l'espace.
Excavated dodecahedronIn geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron. All 20 vertices and 30 of its 60 edges belong to its dodecahedral hull. The 30 other internal edges are longer and belong to a great stellated dodecahedron.
Hexacontaèdre trapézoïdalEn géométrie, l'hexacontaèdre trapézoïdal, qualifié aussi de deltoïdal ou strombique, est un polyèdre dont les 60 faces sont des cerfs-volants convexes. Solide de Catalan, il est le dual du petit rhombicosidodécaèdre. Comme cinq autres solides de Catalan, il n'y a pas de cycle hamiltonien passant par tous ses sommets. Il est topologiquement équivalent à l'intersection de 6 cylindres de mêmes diamètres, chacun des axes passant par deux sommets opposés d'un icosaèdre régulier.