Epsilon-near-zero (ENZ) materialshave attracted great interestdue to their exotic linear and nonlinear responses, which makes itsignificant to tune ENZ wavelengths for wavelength-dependent applications.However, studies to achieve tunability in a wide spect ...
In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.
In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition o ...
Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law ...
We consider the asymmetric exclusion process with a driven tagged particle on Z which has different jump rates from other particles. When the non-tagged particles have non-nearest-neighbor jump rates , we show that the tagged particle can have a speed whic ...
In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimati ...
We consider several aspects of conjugating symmetry methods, including the method of invariants, with an asymptotic approach. In particular we consider how to extend to the stochastic setting several ideas which are well established in the deterministic on ...
We examine a flexible algorithmic framework for solving monotone variational inequalities in the presence of randomness and uncertainty. The proposed template encompasses a wide range of popular first-order methods, including dual averaging, dual extrapola ...
In this work we give optimal, i.e., necessary and sufficient, conditions for integrals of the calculus of variations to guarantee the existence of solutions-both weak and variational solutions-to the associated L-2-gradient flow. The initial values are mer ...