Compare l'apprentissage par renforcement basé sur un modèle et sans modèle, en soulignant les avantages du premier pour s'adapter aux changements de récompense et planifier les actions futures.
Explore les représentations factorisées pour la planification, en se concentrant sur la réduction de la complexité et l'amélioration de l'efficacité grâce à une modélisation distincte des fonctionnalités.
Discute des processus décisionnels de Markov et des techniques de programmation dynamique pour résoudre des politiques optimales dans divers scénarios.
Couvre la planification avec des adversaires, des algorithmes de recherche heuristique et des stratégies pour les jeux avec le hasard, en soulignant l'importance des agents délibératifs.
Couvre les méthodes de gradient de politique, en mettant l'accent sur l'apprentissage par l'action directe et l'optimisation des récompenses dans l'apprentissage par renforcement.