Étymologiquement, plusieurs objets sont coplanaires si et seulement s'ils sont situés dans un même plan. En géométrie, on parle de points coplanaires, de vecteurs coplanaires et de droites coplanaires.
Des points coplanaires sont des points situés dans un même plan. Deux points ou trois points sont toujours coplanaires. En effet, deux points sont toujours sur une même droite qui peut être plongée dans un plan. De même, trois points, ou bien sont alignés et la droite peut être plongée dans un plan, ou bien définissent un plan.
La notion de points coplanaires ne devient donc intéressante que si l'on considère au moins quatre points. C'est la raison pour laquelle un tabouret à trois pieds n'est jamais bancal, même si son assise peut ne pas être horizontale, alors qu'une table à quatre pieds peut être bancale et nécessiter une cale qui compensera l'espace entre le plan où se situe le pied le plus court et le plan où se situe les trois autres.
Trois vecteurs sont coplanaires si et seulement si on peut trouver trois représentants de ces vecteurs situés dans un même plan.
Attention, le fait qu'initialement les premiers représentants choisis ne soient pas dans un même plan n'empêche absolument pas les vecteurs d'être coplanaires. Cela signifie seulement que l'on n'a pas choisi les "bons" représentants.
Par exemple, dans un cube, ABCDEFGH, les points ABCGH ne sont pas coplanaires mais les vecteurs , et sont coplanaires. Il suffit pour s'en apercevoir de changer de représentant pour le vecteur et de prendre le vecteur .
En revanche, s'il a suffi de 4 points pour écrire des représentants des trois vecteurs, les trois vecteurs sont coplanaires si et seulement si les quatre points sont coplanaires.
Les vecteurs , et sont coplanaires si et seulement si les trois vecteurs forment une famille liée, s'il existe un triplet de scalaires différent de tel que
Cette caractérisation se transcrit en géométrie analytique par une condition sur les coordonnées de ces vecteurs dans une base.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Trois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Deux dimensions, bidimensionnel ou 2D sont des expressions qui caractérisent un espace conçu à partir de deux dimensions. Ce type de plan peut représenter des corps en une ou deux dimensions. Un espace en deux dimensions est un plan. Un objet en deux dimensions a donc une superficie mais pas de volume. En mathématiques, le plan composé de deux dimensions est à distinguer de l’espace, qui est lui repéré par trois axes orthogonaux.
In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines.
Schizophrenic patients show aberrancies of contextual processing over a broad range. Of particular importance are low level contextual deficiencies since they might cause higher level processing deficits. It was previously found that schizophrenic patients ...
Let S be a set of n points in R-2 contained in an algebraic curve C of degree d. We prove that the number of distinct distances determined by S is at least c(d)n(4/3), unless C contains a line or a circle. We also prove the lower bound c(d)' min{m(2/3)n(2/ ...