Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore une régression robuste dans l'analyse des données génomiques, en mettant l'accent sur la pondération des résidus importants pour une meilleure précision des estimations et des mesures d'évaluation de la qualité telles que NUSE et RLE.
Couvre les moindres carrés pondérés itératifs, la régression de Poisson et l'analyse bayésienne des données sur l'orge de printemps à l'aide de modèles mixtes.
Explore des méthodes robustes et résistantes dans des modèles linéaires, en soulignant l'importance de gérer les observations extrêmes et les implications de la robustesse dans les modèles de régression.
Explore l'estimation du maximum de vraisemblance, la vraisemblance du log de profil, l'inférence sur les coefficients, la quasi-vraisemblance, la comparaison de modèle et la méthode REML.