Les Neuf Chapitres sur l'art mathématiquevignette|Les Neuf Chapitres sur l'art mathématique Les Neuf Chapitres sur l'art mathématique (九章算術 ou 九章算术 ou Jiǔzhāng Suànshù) est un livre anonyme chinois de mathématiques, compilé entre le et le au début de la période Han sur la base de morceaux datant d'avant la dynastie Qin. Plus ancien texte chinois après le Suàn shù shū, il est parvenu jusqu'à nous par le travail de copie des scribes et (des siècles plus tard) par impression. Un de ses commentaires les plus célèbres est celui de Liu Hui écrit en 263.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Technique de la multiplication en Chine antiqueRod calculus or rod calculation was the mechanical method of algorithmic computation with counting rods in China from the Warring States to Ming dynasty before the counting rods were increasingly replaced by the more convenient and faster abacus. Rod calculus played a key role in the development of Chinese mathematics to its height in Song Dynasty and Yuan Dynasty, culminating in the invention of polynomial equations of up to four unknowns in the work of Zhu Shijie.
Baguettes à calculervignette|Représentation de 71824 à l'aide de baguettes à calculer, Yang Hui () - Encyclopédie de Yongle Les baguettes à calculer (chinois : 算筹/算籌, pinyin : suànchóu) sont des bâtonnets d'environ de long utilisés par les Chinois dès le pour effectuer des calculs. Le système s'appuie sur une représentation des nombres selon une numération décimale positionnelle. Ce système précède de plusieurs siècles le système de calcul avec boulier.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.
Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Cube (algèbre)En algèbre, un cube est la puissance troisième d'un nombre. C'est-à-dire que le cube d'un nombre correspond à la valeur obtenue en multipliant ce nombre par lui-même, puis en multipliant le résultat par le nombre initial. Exemples : Le terme de cube s'est imposé à une époque où la logique de l'algèbre géométrique était omniprésente. Un nombre était toujours positif et correspondait à la longueur d'un segment. Le cube de ce nombre était vu comme le volume d'un cube de côté la longueur initiale.
Méthode de Ruffini-HornerEn mathématiques et algorithmique, la méthode de Ruffini-Horner, connue aussi sous les noms de méthode de Horner, algorithme de Ruffini-Horner ou règle de Ruffini, se décline sur plusieurs niveaux. Elle permet de calculer la valeur d'un polynôme en x. Elle présente un algorithme simple effectuant la division euclidienne d'un polynôme par X − x. Mais elle offre aussi une méthode de changement de variable X = x + Y dans un polynôme. C'est sous cette forme qu'elle est utilisée pour déterminer une valeur approchée d'une racine d'un polynôme.
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.