La gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps. Une difficulté de l'approche est qu'il n'y a ni espace ni temps de référence et que la covariance générale des équations n'est plus manifeste. L'un des résultats fondamentaux de cette théorie est que l'espace-temps présente une structure discrète (par opposition au continuum espace-temps de la relativité générale) : les aires et les volumes d'espace sont quantifiés ainsi que le temps. La notion d'espace est en quelque sorte remplacée par la notion de grains primitifs, sortes d'« atomes » d'espace ou, plus exactement, de quanta du champ gravitationnel, reliés entre eux par des liens caractérisés par un spin (spin de lien) d'où le nom de réseau de spin (spin network). Cette théorie est partiellement en concurrence avec la théorie des supercordes. Voici une liste des principaux physiciens travaillant à cette théorie en 2012 : Abhay Ashtekar du Center for Gravitational Physics & Geometry, université d'État de Pennsylvanie (États-Unis) ; Rodolfo Gambini, l'Institut Henri-Poincaré (France) et l'Université de la République (Uruguay) ; Lee Smolin de l'Institut Perimeter pour la physique théorique de Waterloo (Canada) ; Thomas Thiemann de l'Institut Max-Planck (Institut Albert Einstein, Potsdam, Allemagne), détaché à l'Institut Perimeter pour la physique théorique de Waterloo (Canada) ; Carlo Rovelli du Centre de Physique Théorique de l'Université d'Aix-Marseille (France) ; Aurélien Barrau du Centre national de la recherche scientifique (CNRS), section physique théorique ; Jorge Pullin de l'université d'État de Louisiane (États-Unis).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (27)
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to holography, the modern approach to quantum gravity.
PHYS-702: Advanced Quantum Field Theory
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
PHYS-207(c): General physics : quanta
Le cours traite les ondes électromagnétiques (optique géométrique et optique physique) et donne une introduction à la physique quantique.
Afficher plus
Séances de cours associées (72)
AdS/CFT : Gravité quantique et principe holographique
Explore AdS / CFT, la gravité quantique et le principe holographique dans la théorie des cordes.
Théorie quantique du transport électronique
Couvre la théorie quantique du transport électronique et de la conductance dans les conducteurs idéaux.
Diagrammes connectés : énergie libre et propagateur semi-classique
Explique l'énergie libre comme une somme sur les diagrammes connectés et le propagateur semi-classique dans la théorie quantique des champs.
Afficher plus
Publications associées (227)

Holography and localization of information in quantum gravity

Kyriakos Papadodimas, Alexandre Mathieu Frédéric Belin

Within the AdS/CFT correspondence, we identify a class of CFT operators which represent diff-invariant and approximately local observables in the gravitational dual. Provided that the bulk state breaks all asymptotic symmetries, we show that these operator ...
Springer2024

A Cavity-Microscope for Quantum Simulations with Locally-Controllable All-to-All Interactions

Nick Jacob Sauerwein

This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
EPFL2024

A generalization of the Hawking black hole area theorem

Veronica Sacchi

Hawking's black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclass ...
Springer/Plenum Publishers2024
Afficher plus
Concepts associés (39)
Stephen Hawking
Stephen William Hawking (prononcé ), né le à Oxford et mort le à Cambridge, est un physicien théoricien et cosmologiste britannique. Ses livres et ses apparitions publiques ont fait de ce théoricien de renommée mondiale une célébrité. Depuis l'âge d'une vingtaine d'années, Hawking souffre d'une forme rare de sclérose latérale amyotrophique (SLA) ; sa maladie progresse au fil des ans au point de le laisser presque complètement paralysé.
Système d'unités de Planck
En physique, le système d'unités de Planck est un système d'unités de mesure défini uniquement à partir de constantes physiques fondamentales. Il a été nommé en référence à Max Planck, qui l'introduisit (partiellement) à la fin de l'article présentant la constante qui porte à présent son nom, la constante de Planck. C'est un système d'unités naturelles, dans le sens où une liste définie de constantes physiques fondamentales valent 1, lorsqu’elles sont exprimées dans ce système.
Évaporation des trous noirs
L'évaporation des trous noirs, qui se traduit par le rayonnement de Hawking (dit aussi de Bekenstein-Hawking), est le phénomène selon lequel un observateur regardant un trou noir peut détecter un infime rayonnement de corps noir, évaporation des trous noirs, émanant de la zone proche de son horizon des événements. Il a été prédit par Stephen Hawking en 1975 et est considéré comme l'une de ses plus importantes réalisations.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.