Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Introduit les bases de la recherche de l'information, couvrant la recherche par texte et booléen, la recherche de l'espace vectoriel et le calcul de la similitude.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore les techniques d'indexation, les fichiers inversés, les algorithmes de réduction de carte et les méthodes de récupération de documents haut de gamme dans les systèmes de récupération de texte.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Explore l'indexation sémantique latente dans la récupération d'information, en discutant des algorithmes, des défis dans la récupération spatiale vectorielle et des méthodes de récupération axées sur le concept.
Couvre les modèles probabilistes d'extraction, les mesures d'évaluation, la probabilité de la requête, la rétroaction sur la pertinence de l'utilisateur et l'expansion de la requête.
Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.