Résumé
vignette|Pouvoir de pénétration (exposition externe).Le rayonnement alpha (constitué de noyaux d'hélium) est arrêté par une simple feuille de papier.Le rayonnement bêta (constitué d'électrons ou de positons) est arrêté par une plaque d'aluminium.Le rayonnement gamma, constitué de photons très énergétiques, est atténué (et non arrêté) quand il pénètre de la matière dense, ce qui le rend particulièrement dangereux pour les organismes vivants.Il existe d'autres types de rayonnements ionisants. Ces trois formes sont souvent associées à la radioactivité. vignette|Nouveau pictogramme de risque contre les rayonnements ionisants, transféré le par l'AIEA à ISO. Il doit remplacer le pictogramme jaune classique, uniquement « dans certaines circonstances, spécifiques et limitées ». Un rayonnement ionisant est un rayonnement électromagnétique ou corpusculaire capable de produire directement ou indirectement des ions lors de son passage à travers la matière. Ces rayonnements peuvent être produits par la radioactivité d'atomes tels que l'uranium, ou par des appareils électriques comme des scanners. Ils ont des applications notamment dans les domaines de la défense, de la santé et de la production d'électricité. Pour les organismes vivants, les rayonnements ionisants peuvent être nocifs, voire mortels en cas de dose élevée. Les rayons ionisants sont de natures et de sources variées. Leurs propriétés dépendent de la nature des particules constitutives du rayonnement et de leur énergie. Les rayonnements les plus énergétiques transfèrent assez d’énergie aux électrons de la matière pour les arracher de leur atome. Les atomes ainsi privés de certains de leurs électrons sont alors chargés positivement. Les atomes voisins qui accueillent les électrons se chargent négativement. Les atomes chargés positivement ou négativement sont appelés « ions ». Les atomes qui ont perdu au moins un électron sont devenus des ions positifs (cations), tandis que les atomes qui ont reçu au moins un électron sont devenus des ions négatifs (anions).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (24)
Cours associés (59)
PHYS-438: Fundamentals of biomedical imaging
The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the major biomedical imaging modalities of importance to biology and medicine, with an e
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with foundation in radiation protection and with information about the main applications of radioactive sources/subs
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Afficher plus
MOOCs associés (8)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Afficher plus