Résumé
In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit. Mean motion is used as an approximation of the actual orbital speed in making an initial calculation of the body's position in its orbit, for instance, from a set of orbital elements. This mean position is refined by Kepler's equation to produce the true position. Define the orbital period (the time period for the body to complete one orbit) as P, with dimension of time. The mean motion is simply one revolution divided by this time, or, with dimensions of radians per unit time, degrees per unit time or revolutions per unit time. The value of mean motion depends on the circumstances of the particular gravitating system. In systems with more mass, bodies will orbit faster, in accordance with Newton's law of universal gravitation. Likewise, bodies closer together will also orbit faster. Kepler's 3rd law of planetary motion states, the square of the periodic time is proportional to the cube of the mean distance, or where a is the semi-major axis or mean distance, and P is the orbital period as above. The constant of proportionality is given by where μ is the standard gravitational parameter, a constant for any particular gravitational system.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Séances de cours associées (33)
Forces gravitationnelles
Couvre des sujets de physique avancée liés aux forces gravitationnelles et les contributions de Johannes Kepler à la compréhension du mouvement planétaire.
Kepler Lois et anomalies
Couvre la détermination des coordonnées des véhicules satellites par rapport à la Terre à l'aide d'almanac et d'éphémérides.
Anomalie moyenne (orbite circulaire)
Discute de l'anomalie moyenne dans les orbites circulaires, explorant sa relation avec la vitesse, la période et la vitesse angulaire.
Afficher plus
Publications associées (9)
Concepts associés (4)
Mouvement képlérien
En astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Semi-major and semi-minor axes
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Anomalie moyenne
En mécanique céleste, l'anomalie moyenne (en anglais : mean anomaly) est une mesure d'angle entre le périapse et la position d'un corps fictif parcourant une orbite circulaire synchrone avec le corps réel. Le terme "anomalie" trouve son origine historique dans le système géocentrique antique dans lequel les anciens constataient une anomalie de l'orbite par rapport à l'orbite circulaire idéale. L'anomalie moyenne est couramment notée (lettre M capitale de l'alphabet latin).
Afficher plus