Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la régression linéaire, de l'interprétation des coefficients, des hypothèses, des transformations et de la «différence des différences» pour l'analyse causale.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.
Couvre les moindres carrés pondérés itératifs, la vérification du modèle, la régression de Poisson et lajustement des modèles multinomiels en utilisant les erreurs de Poisson.
Explore l'estimation, la prévision et la comparaison de modèles dans l'analyse de séries chronologiques à l'aide d'exemples de données réelles pour motiver l'étude.
Discute de l'application du théorème principal à la régression des moindres carrés dans une RKHS, en se concentrant sur LR de la borne de Rademacher et la constante de Lipschitz.