Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente l'estimateur de Bayes, expliquant sa définition, son application dans des scénarios de coûts quadratiques et son importance dans le raisonnement probabiliste.
Discute de la rétroaction de l'évaluation, de la convergence, de l'analyse des erreurs et des étapes temporelles adaptatives dans les simulations physiques.
Couvre l'application de la propagation de la croyance dans les modèles de blocs stochastiques, en se concentrant sur la simplification du processus et la résolution étape par étape.
Couvre la recherche probabiliste de l'information, les modèles de probabilité d'interrogation, la modélisation du langage et les algorithmes de rétroaction de pertinence.
Couvre la probabilité maximale d'estimation dans l'inférence statistique, en discutant des propriétés MLE, des exemples et de l'unicité dans les familles exponentielles.
Explore l'analyse de régression, la modélisation cinétique, l'estimation des paramètres et la modélisation de la concentration d'ozone atmosphérique à l'aide de relations linéaires et de diagrammes de dispersion.