Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Ensemble parfaitDans un espace topologique, un ensemble parfait est une partie fermée sans point isolé, ou de façon équivalente, une partie égale à son ensemble dérivé, c'est-à-dire à l'ensemble de ses « points limites », ou « points d'accumulation ». L'ensemble vide est parfait dans tout espace. Dans R, un segment [a, b] est un exemple trivial d'ensemble parfait. Un exemple moins évident est constitué par l'ensemble de Cantor. Cet ensemble est totalement discontinu et homéomorphe à l'espace de Cantor .
Point isoléEn topologie, un point x d'un espace topologique E est dit isolé si le singleton {x} est un ouvert. Formulations équivalentes : {x} est un voisinage de x ; x n'est pas adhérent à E{x} (x n'est pas un « point d'accumulation »). En particulier, si E est un espace métrique (par exemple une partie d'un espace euclidien), x est un point isolé de E s'il existe une boule ouverte centrée en x qui ne contient pas d'autre point de E. Un espace topologique dans lequel tout point est isolé est dit discret.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Espace T1En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Georg CantorGeorg Cantor est un mathématicien allemand, né le à Saint-Pétersbourg (Empire russe) et mort le à Halle (Empire allemand). Il est connu pour être le créateur de la théorie des ensembles. Il établit l'importance de la bijection entre les ensembles, définit les ensembles infinis et les ensembles bien ordonnés. Il prouva également que les nombres réels sont « plus nombreux » que les entiers naturels. En fait, le théorème de Cantor implique l'existence d'une « infinité d'infinis ».