En mathématiques, et plus particulièrement en combinatoire, la théorie de Ramsey, nommée d'après Frank Ramsey, tente typiquement de répondre à des questions de la forme : « combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? »
Le premier exemple de résultat de cette forme est le principe des tiroirs, énoncé par Dirichlet en 1834.
Supposons, par exemple, que n chaussettes soient rangées dans m tiroirs. Existe-t-il une valeur de l'entier n à partir de laquelle nous puissions être sûrs qu'il existe au moins un tiroir contenant au moins deux chaussettes ? La réponse donnée par le principe des tiroirs est que c'est le cas dès que n > m. Le théorème de Ramsey généralise ce principe.
Un résultat typique dans la théorie de Ramsey commence par considérer une certaine structure mathématique, qui est alors découpée en morceaux. Quelle doit être la grandeur de la structure d'origine afin d'assurer qu'au moins un des morceaux possède une certaine propriété ?
Par exemple, considérons un graphe complet d'ordre n, c'est-à-dire ayant n sommets reliés à chaque autre sommet par une arête (un graphe complet d'ordre 3 s'appelle un triangle). Colorons maintenant chaque arête en rouge ou bleu. Quelle grandeur n doit-il avoir afin d'assurer, quelle que soit la coloration choisie, l'existence d'au moins un triangle bleu ou un triangle rouge ? On peut démontrer que la réponse est 6. Ce résultat peut se reformuler de la manière suivante : à une soirée à laquelle se rendent au moins six personnes, il y a au moins trois personnes qui se connaissent mutuellement ou au moins trois qui sont étrangères les unes aux autres.
Parmi les résultats de la théorie de Ramsey on peut distinguer les exemples suivants, à commencer par le théorème de Ramsey.
Théorème de Ramsey
Le résultat précédent est un cas particulier du théorème de Ramsey, qui indique que pour toute suite finie (n, ...
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This is an introductory course to combinatorial number theory. The main objective of this course is to learn how to use combinatorial, topological, and analytic methods to solve problems in number the
En mathématiques, et plus particulièrement en combinatoire, le théorème de Ramsey, dû à Frank Ramsey (en 1930), est un théorème fondamental de la théorie de Ramsey. Il affirme que pour tout n, tout graphe complet suffisamment grand dont les arêtes sont colorées contient des sous-graphes complets de taille n d'une seule couleur. En théorie des ensembles, une de ses généralisations, le théorème de Ramsey infini, permet de définir un type particulier de grand cardinal.
thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Explore la théorie de Ramsey, les altérations, les colorations dans les graphiques, les correspondances monochromatiques et la signification des grandes cliques.
Explore les taux observés dans les réactions hétérogènes, l'impact du transfert de masse interne, la cinétique des réactions, l'équation d'Arrhenius et les effets du transfert de chaleur.
,
Several discrete geometry problems are equivalent to estimating the size of the largest homogeneous sets in graphs that happen to be the union of few comparability graphs. An important observation for such results is that if G is an n-vertex graph that is ...
We considerm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The casem= 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type resul ...