In economics and game theory, complete information is an economic situation or game in which knowledge about other market participants or players is available to all participants. The utility functions (including risk aversion), payoffs, strategies and "types" of players are thus common knowledge. Complete information is the concept that each player in the game is aware of the sequence, strategies, and payoffs throughout gameplay. Given this information, the players have the ability to plan accordingly based on the information to maximize their own strategies and utility at the end of the game. Inversely, in a game with incomplete information, players do not possess full information about their opponents. Some players possess private information, a fact that the others should take into account when forming expectations about how those players will behave. A typical example is an auction: each player knows his own utility function (valuation for the item), but does not know the utility function of the other players. Games of incomplete information arise frequently in social science. For instance, John Harsanyi was motivated by consideration of arms control negotiations, where the players may be uncertain both of the capabilities of their opponents and of their desires and beliefs. It is often assumed that the players have some statistical information about the other players, e.g. in an auction, each player knows that the valuations of the other players are drawn from some probability distribution. In this case, the game is called a Bayesian game. In games that have a varying degree of complete information and game type, there are different methods available to the player to solve the game based on this information. In games with static, complete information, the approach to solve is to use Nash equilibrium to find viable strategies. In dynamic games with complete information, backward induction is the solution concept, which eliminates non-credible threats as potential strategies for players.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
FIN-620: Game Theory
Game theory deals with multiperson strategic decision making. Major fields of Economics, such as Microeconomics, Corporate Finance, Market Microstructure, Monetary Economics, Industrial Organization,
MGT-300: Game theory and strategic decisions
Game theory studies the strategic interactions between rational agents. It has a myriad of applications in politics, business, sports. A special branch of Game Theory, Auction Theory, has recently g
FIN-615: Dynamic Asset Pricing
This course provides an advanced introduction to the methods and results of continuous time asset pricing
Afficher plus
Publications associées (34)
Concepts associés (7)
Jeu bayésien
En théorie des jeux, un jeu bayésien est un jeu dans lequel l'information dont dispose chaque joueur sur les caractéristiques des autres joueurs est incomplète. En particulier, on représente ainsi un jeu dans lequel un ou plusieurs joueurs font face à une incertitude quant au gain des autres joueurs. Cette situation impose de spécifier pour chaque joueur des croyances concernant les caractéristiques des autres joueurs. Du fait de l'hypothèse de rationalité, ces croyances prennent la forme d'une distribution de probabilités sur toutes les caractéristiques possibles.
Signaling game
In game theory, a signaling game is a simple type of a dynamic Bayesian game. The essence of a signalling game is that one player takes an action, the signal, to convey information to another player, where sending the signal is more costly if they are conveying false information. A manufacturer, for example, might provide a warranty for its product in order to signal to consumers that its product is unlikely to break down. The classic example is of a worker who acquires a college degree not because it increases their skill, but because it conveys their ability to employers.
Perfect information
In economics, perfect information (sometimes referred to as "no hidden information") is a feature of perfect competition. With perfect information in a market, all consumers and producers have complete and instantaneous knowledge of all market prices, their own utility, and own cost functions. In game theory, a sequential game has perfect information if each player, when making any decision, is perfectly informed of all the events that have previously occurred, including the "initialization event" of the game (e.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.