Premier ordinal non dénombrableEn mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Grand ordinal dénombrableEn mathématiques, et plus particulièrement en théorie des ensembles, il existe de nombreuses méthodes de description des ordinaux dénombrables. Les plus petits (jusqu'à ε0) peuvent être exprimés (de façon utile et non circulaire) à l'aide de leur forme normale de Cantor. Au-delà, on parle de grands ordinaux dénombrables ; de nombreux grands ordinaux (le plus souvent en rapport avec la théorie de la démonstration) possèdent des notations ordinales calculables.
Ordinal notationIn mathematical logic and set theory, an ordinal notation is a partial function mapping the set of all finite sequences of symbols, themselves members of a finite alphabet, to a countable set of ordinals. A Gödel numbering is a function mapping the set of well-formed formulae (a finite sequence of symbols on which the ordinal notation function is defined) of some formal language to the natural numbers. This associates each well-formed formula with a unique natural number, called its Gödel number.
Primitive recursive arithmeticPrimitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
Arithmétique du second ordreEn logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels. Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci.
EquiconsistencyIn mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.