Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.
Explore la fraude scientifique, l'intégrité, les cas d'inconduite, les lignes directrices et les cadres institutionnels pour l'intégrité de la recherche.
Se penche sur la science des données dans la santé personnalisée et mondiale, en mettant l'accent sur les technologies améliorant la confidentialité et les applications de l'IA dans les soins de santé.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Explore la précision des données par l'évaluation de la fidélité, la détection des erreurs, la manipulation aberrante, les corrélations, les dépendances fonctionnelles, la détection des violations, les contraintes de déni et les techniques de réparation des données.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Explore la production, le stockage, le traitement et les dimensions de Big Data, ainsi que les défis en matière d'analyse de données, d'élasticité de l'informatique en nuage et de sécurité.
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.
Étudier l'exhaustivité et la cohérence du contrôle dans l'évaluation du cycle de vie, en mettant l'accent sur l'importance de la disponibilité des données et de la vérification de la cohérence.