Assistant de preuveEn informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets.
Unificationvignette|Unifier deux termes, c'est les rendre identiques en remplaçant les variables. En informatique et en logique, l'unification est un processus algorithmique qui, étant donnés deux termes, trouve une substitution qui appliquée aux deux termes les rend identiques. Par exemple, et peuvent être rendus identiques par la substitution et , qui donne quand on l'applique à chacun de ces termes le terme .
MetamathMetamath est un langage formel et un logiciel associé (un assistant de preuve) pour rassembler, vérifier et étudier les preuves de théorèmes mathématiques. Plusieurs bases de théorèmes avec leurs preuves ont été développés avec Metamath. Elles rassemblent des résultats standards en logique, théorie des ensembles, théorie des nombres, algèbre, topologie, analyse, entre autres domaines.
Programmation déclarativevignette|Binario cropped. La programmation déclarative est un paradigme de programmation qui consiste à créer des applications sur la base de composants logiciels indépendants du contexte et ne comportant aucun état interne. Autrement dit, l'appel d'un de ces composants avec les mêmes arguments produit exactement le même résultat, quel que soit le moment et le contexte de l'appel. En programmation déclarative, on décrit le quoi, c'est-à-dire le problème.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Logique d'ordre supérieurLes logiques d'ordre supérieur (en anglais, higher-order logic ou HOL) sont des logiques formelles permettant d'utiliser des variables qui réfèrent à des fonctions ou à des prédicats. Elles étendent le calcul des prédicats. Cela revient à dire que l'on considère les fonctions et prédicats comme des objets de base à part entière, au même titre que, par exemple, un nombre entier. On s'autorisera ainsi, d'une part, à quantifier les prédicats et les fonctions et, d'autre part, à donner des fonctions ou des prédicats en arguments à d'autres fonctions ou prédicats.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.