Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets. Les projets les plus avancés sont le projet Mizar en Pologne, le projet -Isabelle en Grande-Bretagne et aux États-Unis et le projet Coq en France. Ces logiciels permettent à un humain de transcrire les étapes d'une démonstration mathématique dans un processus se dénomme formalisation. Grâce à elle, le logiciel peut ensuite vérifier la validité de la démonstration. -. Le but de ces projets est de mettre à la disposition du mathématicien des outils informatiques pour l’aider à élaborer une version formelle du résultat auquel il s’intéresse. Le logiciel stocke aussi les résultats démontrés auparavant. L'écriture de preuves entièrement formelles est une activité extrêmement fastidieuse ; de nombreuses étapes qui seraient sautées, car considérées comme évidentes pour le lecteur familier des mathématiques, doivent être décortiquées dans les plus grands détails. Cependant, l'assistant de preuve peut fournir plus ou moins d'automatisation pour limiter le travail de l'utilisateur humain. Certains assistants de preuve, tels que PVS, possèdent des procédures de décision dans des domaines souvent utilisés et décidables (tels que l'arithmétique de Presburger) ; souvent, on leur ajoute des procédures de semi-décision (qui ne se terminent pas forcément avec succès). Selon une étude de Freek Wiedijk évoquée en 2011 dans le magazine Pour la Science mais réactualisée depuis, sur la liste des « 100 théorèmes mathématiques les plus importants » — liste attribuée à Paul et Jack Abad — 91 des 100 théorèmes ont été formalisés. Avec les assistants de preuve actuels, le travail de formalisation est rendu fastidieux par un langage complexe.
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...