Concept

Formalism (philosophy of mathematics)

Résumé
In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology of objects or properties than ludo or chess." According to formalism, the truths expressed in logic and mathematics are not about numbers, sets, or triangles or any other coextensive subject matter — in fact, they aren't "about" anything at all. Rather, mathematical statements are syntactic forms whose shapes and locations have no meaning unless they are given an interpretation (or semantics). In contrast to mathematical realism, logicism, or intuitionism, formalism's contours are less defined due to broad approaches that can be categorized as formalist. Along with realism and intuitionism, formalism is one of the main theories in the philosophy of mathematics that developed in the late nineteenth and early twentieth century. Among formalists, David Hilbert was the most prominent advocate. The early mathematical formalists attempted "to block, avoid, or sidestep (in some way) any ontological commitment to a problematic realm of abstract objects." German mathematicians Eduard Heine and Carl Johannes Thomae are considered early advocates of mathematical formalism. Heine and Thomae's formalism can be found in Gottlob Frege's criticisms in The Foundations of Arithmetic. According to Alan Weir, the formalism of Heine and Thomae that Frege attacks can be "describe[d] as term formalism or game formalism." Term formalism is the view that mathematical expressions refer to symbols, not numbers. Heine expressed this view as follows: "When it comes to definition, I take a purely formal position, in that I call certain tangible signs numbers, so that the existence of these numbers is not in question.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.