Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we present Majority-Inverter Graph (MIG), a novel logic representation structure for efficient optimization of Boolean functions. An MIG is a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. We show that MIGs include any AND/OR/Inverter Graphs (AOIGs), containing also the well- known AIGs. In order to support the natural manipulation of MIGs, we introduce a new Boolean algebra, based exclusively on majority and inverter operations, with a complete axiomatic system. Theoretical results show that it is possible to explore the entire MIG representation space by using only five primitive transformation rules. Such feature opens up a great opportunity for logic optimization and synthesis. We showcase the MIG potential by proposing a delay-oriented optimization technique. Experimental results over MCNC benchmarks show that MIG optimization reduces the number of logic levels by 18%, on average, with respect to AIG optimization performed by ABC academic tool. Employed in a traditional optimization-mapping circuit synthesis flow, MIG optimization enables an average reduction of {22%, 14%, 11%} in the estimated {delay, area, power} metrics, before physical design, as compared to academic/commercial synthesis flows.
Giovanni De Micheli, Alessandro Tempia Calvino