Atomic, molecular, and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.
Light scattering by particlesLight scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Loi en carré inverseEn physique, une loi en carré inverse est une loi physique postulant qu'une quantité physique (énergie, force, ou autre) est inversement proportionnelle au carré de la distance de l'origine de cette quantité physique. Cette loi fut d'abord suggérée en 1645 par l'astronome français Ismaël Boulliau dans son livre Astronomica Philolaica, puis mise en forme par Isaac Newton en 1687 après que Robert Hooke lui eut proposé l'idée dans une lettre datée du .
Diffusion élastiqueUne diffusion élastique (ou collision élastique) est une interaction, entre deux corps ou plus, au cours de laquelle l'énergie cinétique totale est conservée, mais à la suite de laquelle les directions de propagation sont modifiées. Ce changement de direction, dû aux forces d'interaction, est ce qui constitue la diffusion. Ce type de diffusion est qualifié d'élastique par opposition aux collisions inélastiques au cours desquelles l'énergie cinétique n'est pas conservée.
Attenuation coefficientThe linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The SI unit of attenuation coefficient is the reciprocal metre (m−1).
Loi de BraggEn physique, la loi de Bragg est une loi qui interprète le processus de la diffraction des radiations sur un cristal. Elle fut découverte par W.H. et W.L. Bragg vers 1912. Lorsque l'on bombarde un cristal avec un rayonnement dont la longueur d'onde est du même ordre de grandeur que la distance inter-atomique, il se produit un phénomène de diffraction. Les conditions de diffraction donnent les directions dans lesquelles on observe de l'intensité diffractée par le cristal.
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Particule matérielleLe terme « particule matérielle » (material particle en anglais) désigne une petite portion d'un corps, de matière solide ou fluide, constituée d'un nombre suffisamment grand de particules élémentaires. La matière est pleine de vide. Un corps de matière solide ou fluide est un domaine discontinu de particules composites (protons, neutrons), elles-mêmes composées de particules élémentaires. Les dimensions des particules élémentaires sont très petites devant les distances qui les séparent.