In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More formally, in the context of QFT, the S-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the in-states and the out-states) in the Hilbert space of physical states. A multi-particle state is said to be free (non-interacting) if it transforms under Lorentz transformations as a tensor product, or direct product in physics parlance, of one-particle states as prescribed by equation below. Asymptotically free then means that the state has this appearance in either the distant past or the distant future.
While the S-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowski space. In this special case, the Hilbert space is a space of irreducible unitary representations of the inhomogeneous Lorentz group (the Poincaré group); the S-matrix is the evolution operator between (the distant past), and (the distant future). It is defined only in the limit of zero energy density (or infinite particle separation distance).
It can be shown that if a quantum field theory in Minkowski space has a mass gap, the state in the asymptotic past and in the asymptotic future are both described by Fock spaces.
The S-matrix was first introduced by John Archibald Wheeler in the 1937 paper "On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure". In this paper Wheeler introduced a scattering matrix – a unitary matrix of coefficients connecting "the asymptotic behaviour of an arbitrary particular solution [of the integral equations] with that of solutions of a standard form", but did not develop it fully.
In the 1940s, Werner Heisenberg independently developed and substantiated the idea of the S-matrix.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
To introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
En mécanique quantique, l'amplitude de diffusion est l'amplitude de probabilité qui intervient lorsqu'une onde sphérique sortante (objet ponctuel) est éclairée par une onde plane entrante, dans le cas d'un processus de diffusion à l'état stationnaire. Ce processus est décrit par la fonction d'onde suivante : où est l'onde plane incidente et transmise selon l'axe , avec le nombre d'onde, est l'onde sphérique sortante diffusée. On a les termes : le vecteur de position, l'angle de diffusion, et l'amplitude de diffusion, dont la dimension est une longueur.
En mécanique quantique, l'unitarité désigne le fait que l'évolution de la fonction d'onde au cours du temps doit être compatible avec l'interprétation probabiliste qui lui est associée. La fonction d'onde d'un système quantique, comme l'électron par exemple, permet de déterminer la probabilité de présence de celui-ci dans une petite boîte de volume centrée en par Et comme la probabilité totale de trouver le système quelque part doit être de un, il en découle qu'on doit avoir en intégrant sur tout l'espace.
En mécanique quantique, le courant de probabilité est un concept décrivant le flux de densité de probabilité. Tout comme la loi de conservation de la charge en électrodynamique, il existe une loi de conservation de la densité de probabilité en mécanique quantique. Intuitivement, cette dernière indique que lorsque la densité de probabilité dans un volume fixé varie dans le temps, alors il doit exister un flux de densité de probabilité à travers les parois de ce volume. La notion de courant de probabilité permet de décrire ce flux de probabilité.
Explore la section transversale, le taux de désintégration et la série Dyson en turbulence, mettant l'accent sur la division appropriée et l'invariance de Lorentz.
Couvre la section transversale, la durée de vie, le fluide quantique, les états asymptotiques, les symétries discrètes et l'ordre normal dans la théorie quantique des champs.
Couvre le concept d'états asymptotiques et de matrice S dans la théorie quantique des champs, en se concentrant sur l'évolution des paquets d'ondes et les états de diffusion.
In this thesis we study how physical principles imposed on the S-matrix, such as Lorentz invariance, unitarity, crossing symmetry and analyticity constrain quantum field theories at the nonperturbative level. We start with a pedagogical introduction to the ...
EPFL2023
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...
AMER PHYSICAL SOC2023
, ,
We present a nonperturbative recipe for directly computing the S-matrix in strongly-coupled QFTs. The method makes use of spectral data obtained in a Hamiltonian framework and can be applied to a wide range of theories, including potentially QCD. We demons ...