Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les arbres de décision dans l'apprentissage automatique, leur flexibilité, les critères d'impureté et introduit des méthodes de renforcement comme Adaboost.
Explore la section transversale, le taux de désintégration et la série Dyson en turbulence, mettant l'accent sur la division appropriée et l'invariance de Lorentz.
Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.
Couvre les forêts de décision, la formation, les apprenants faibles, l'entropie, la stimulation, l'estimation de pose 3D et les applications pratiques.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.