L'hystérésis (ou hystérèse), du grec grc (« après », « plus tard »), substantif féminin, est la propriété d'un système dont l'évolution ne suit pas le même chemin selon qu'une cause extérieure augmente ou diminue. Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E = f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E = f(C) obtenue à la décroissance de C. Généralement, la raison en est que les variations de E ne sont pas totalement réversibles comme la magnétisation d'un matériau par un courant électrique qui persiste quand le courant a disparu. Lorsqu'on impose à la cause C des variations périodiques, l'hystérésis est responsable d'une forme particulière pour la courbe E = f(C) appelée cycle d'hystérésis. Une valeur x peut donc avoir deux images y différentes. Remarque : ces courbes ne sont que des formes possibles d'un phénomène d'hystérésis. Le cycle peut ne pas être centré autour du point (0 ; 0) si la variation périodique de C n'est pas symétrique par rapport à l'origine. Les phénomènes d'hystérésis sont responsables de l'apparition de non-linéarités dans la relation E = f(C) rendant parfois très difficile la modélisation de cette relation par une équation mathématique. On peut concevoir volontairement un dispositif présentant une hystérésis, par exemple pour les régulations de température par thermostat, on introduit de l'hystérésis dans la commande afin que la consigne de température pour l'allumage soit différente de la consigne pour l'arrêt. Ceci permet d'éviter de trop nombreuses mises en marche ou extinctions de la chaudière. Les comparateurs réalisant cette fonction sont appelés comparateurs à hystérésis. Dans cet exemple le chauffage est activé quand la température décroît en dessous de et coupé quand elle dépasse donnant une hystérésis de : on dit que la température est régulée à 19,4 degrés (à 0,2 degré près). Lorsque les grandeurs E et C représentent respectivement un effort généralisé (comme une force, un couple, une tension électrique, une pression, etc.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
MICRO-314: Actuators and Electromagnetic systems II
Les étudiants seront capables de modéliser, de simuler et de mesurer des actionneurs électromagnétiques et des moteurs électriques.
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
MSE-101(b): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Afficher plus
Publications associées (325)
Concepts associés (21)
Champ coercitif
En science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
Magnetic domain
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
Température de Curie
La température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Afficher plus
MOOCs associés (12)
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.