Concepts associés (16)
Foncteur plein et fidèle
En théorie des catégories, un foncteur plein (respectivement fidèle) est un foncteur dont la restriction à chacun des ensembles de morphismes est surjectif (respectivement injectif). Soient C et D deux catégories et F : C → D un foncteur de C dans D. Pour X et Y des objets de C, le foncteur F induit une fonction Le foncteur F est dit : fidèle si pour tout X, Y dans C, FX, Y est injective ; plein si pour tout X, Y dans C, FX, Y est surjective ; pleinement fidèle si pour tout X, Y dans C, FX, Y est bijective.
Objet libre
En mathématiques, la notion d'objet libre est l'un des concepts de base de l'algèbre générale. Elle appartient à l'algèbre universelle, car elle s'applique à tous les types de structures algébriques (avec des opérations finitaires). Elle se formule plus généralement dans le langage de la théorie des catégories : le foncteur « objet libre » est l'adjoint à gauche du foncteur d'oubli. Des exemples d'objets libres sont les groupes libres, les groupes abéliens libres, les algèbres tensorielles...
Catégorie des groupes abéliens
En mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
Homotopy category
In mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Dual (category theory)
In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
Catégorie des groupes
En mathématiques, la catégorie des groupes est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes. La catégorie des groupes, notée Grp, est définie de la manière suivante : Ses objets sont les groupes ; Les morphismes sont les morphismes de groupes, munis de la composition usuelle de fonctions, l'identité étant l'application identité. En théorie des catégories supérieures il est parfois pratique de voir les groupes comme des groupoïdes possédant un unique objet, les flèches de cet unique objet vers lui-même étant dénotées par les éléments du groupe lui-même.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.