Explore la sélection des modèles dans la régression des moindres carrés, en abordant les défis de multicollinéarité et en introduisant des techniques de rétrécissement.
Couvre l'expansion des fonctionnalités polynômes, les fonctions du noyau, la régression et le SVM, soulignant l'importance de choisir les fonctions pour l'expansion des fonctionnalités.
Discute de l'application du théorème principal à la régression des moindres carrés dans une RKHS, en se concentrant sur LR de la borne de Rademacher et la constante de Lipschitz.
Explore l'application de l'apprentissage automatique dans la dynamique moléculaire et les matériaux, en mettant l'accent sur la création de caractéristiques significatives et l'importance de la généralisabilité.
Couvre l'inférence, la construction de modèles, la sélection de variables, la robustesse, la régression régularisée, les modèles mixtes et les méthodes de régression.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.