Cours associés (29)
EE-452: Network machine learning
Fundamentals, methods, algorithms and applications of network machine learning and graph neural networks
COM-516: Markov chains and algorithmic applications
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
AR-219: Advanced CAO and Integrated Modeling DIM
1ère année: bases nécessaires à la représentation informatique 2D (3D). Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D. Mise en relation des outils de CAO
MGT-416: Causal inference
Students will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and application will be balanced, with students working directly with network data th
EE-626: Graph representations for biology and medicine
Systems of interacting entities, modeled as graphs, are pervasive in biology and medicine. The class will cover advanced topics in signal processing and machine learning on graphs and networks, and wi
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
ME-427: Networked control systems
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
EE-619: Advanced topics in network neuroscience
The main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.