Fourier transform on finite groupsIn mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. The Fourier transform of a function at a representation of is For each representation of , is a matrix, where is the degree of . The inverse Fourier transform at an element of is given by The convolution of two functions is defined as The Fourier transform of a convolution at any representation of is given by For functions , the Plancherel formula states where are the irreducible representations of .
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Primitive element (finite field)In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1)th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α^i for some integer i. If q is a prime number, the elements of GF(q) can be identified with the integers modulo q. In this case, a primitive element is also called a primitive root modulo q.
Septic equationIn algebra, a septic equation is an equation of the form where a ≠ 0. A septic function is a function of the form where a ≠ 0. In other words, it is a polynomial of degree seven. If a = 0, then f is a sextic function (b ≠ 0), quintic function (b = 0, c ≠ 0), etc. The equation may be obtained from the function by setting f(x) = 0. The coefficients a, b, c, d, e, f, g, h may be either integers, rational numbers, real numbers, complex numbers or, more generally, members of any field.