Fourier transform on finite groupsIn mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. The Fourier transform of a function at a representation of is For each representation of , is a matrix, where is the degree of . The inverse Fourier transform at an element of is given by The convolution of two functions is defined as The Fourier transform of a convolution at any representation of is given by For functions , the Plancherel formula states where are the irreducible representations of .
Burnside's theoremIn mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes. The theorem was proved by using the representation theory of finite groups. Several special cases of the theorem had previously been proved by Burnside, Jordan, and Frobenius.
Primitive element (finite field)In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1)th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α^i for some integer i. If q is a prime number, the elements of GF(q) can be identified with the integers modulo q. In this case, a primitive element is also called a primitive root modulo q.
Septic equationIn algebra, a septic equation is an equation of the form where a ≠ 0. A septic function is a function of the form where a ≠ 0. In other words, it is a polynomial of degree seven. If a = 0, then f is a sextic function (b ≠ 0), quintic function (b = 0, c ≠ 0), etc. The equation may be obtained from the function by setting f(x) = 0. The coefficients a, b, c, d, e, f, g, h may be either integers, rational numbers, real numbers, complex numbers or, more generally, members of any field.